LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy dissipation in the inner surf zone: new insights from LiDAR-based roller geometry measurements

Photo from wikipedia

The spatial and temporal variation of energy dissipation rates in breaking waves controls the mean circulation of the surf zone. As this circulation plays an important role in the morphodynamics… Click to show full abstract

The spatial and temporal variation of energy dissipation rates in breaking waves controls the mean circulation of the surf zone. As this circulation plays an important role in the morphodynamics of beaches, it is vital to develop better understanding of the energy dissipation processes in breaking and broken waves. In this paper, we present the first direct field measurements of roller geometry extracted from a LiDAR data set of broken waves to obtain new insights into wave energy dissipation in the inner surf zone. We use a roller model to show that most existing roller area formulations in the literature lead to considerable overestimation of the wave energy dissipation, which is found to be close to, but smaller than, the energy dissipation in a hydraulic jump of the same height. The role of the roller density is also investigated, and we propose that it should be incorporated into modified roller area formulations until better knowledge of the roller area and its link with the mean roller density is acquired. Finally, using previously published results from deepwater wave breaking studies, we propose a scaling law for energy dissipation in the inner surf zone, which achieves satisfactory results at both the time‐averaged and wave‐by‐wave scales.

Keywords: energy dissipation; geometry; surf zone; roller

Journal Title: Journal of Geophysical Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.