LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Transient Denitrification During a High Organic Matter Event in the Black Sea

Photo by itfeelslikefilm from unsplash

N2 production by denitrification can occur in anoxic water or potentially inside organic particles. Here we compare data from the Black Sea, a permanently anoxic basin, during two organic matter… Click to show full abstract

N2 production by denitrification can occur in anoxic water or potentially inside organic particles. Here we compare data from the Black Sea, a permanently anoxic basin, during two organic matter regimes: suspended particulate organic matter concentrations were high in the oxycline after the spring bloom in March 2005 compared to lower organic matter concentrations in June 2005, May and October 2007, July 2008, and May 2001. For all cruises, N2 gas had a maximum in the suboxic zone (O2 < 10 μmol/L). During the high organic matter event (March 2005), an additional shallower N2 gas and δ15N‐N2 maxima occurred above the suboxic zone in the oxycline where oxygen concentrations were 30–50 μmol/L. Examination of 16S rRNA indicated that anammox bacteria were not present in the oxycline. The δ15N of biologically produced N2 in the oxycline in March 2005 was significantly enriched (+7‰ to +38‰), not depleted, as would be expected from water column fractionation. A simple diffusion calculation indicated that ammonium produced from remineralization inside particles could be oxidized to nitrate and then completely consumed by denitrification inside the particle. In this calculation, half of denitrified N atoms originated from organic N [δ15N = 11‰] and half of N atoms originated from ambient nitrate [δ15N = 5‰–7‰], producing enriched δ15N‐N2 values. We suggest that denitrifiers were active in microzones inside particulates in hypoxic waters above the suboxic zone of the Black Sea. Denitrification in particles may also explain previous data from the oxycline above ocean oxygen deficient zones.

Keywords: organic matter; high organic; matter; black sea; denitrification

Journal Title: Global Biogeochemical Cycles
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.