LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Explosive Eruptions With Little Warning: Experimental Petrology and Volcano Monitoring Observations From the 2014 Eruption of Kelud, Indonesia

Photo from wikipedia

Explosive eruptions that occur with little or no precursory unrest (less than a month) pose the greatest hazards from volcanoes to nearby populations. Here we focus on the preeruptive conditions… Click to show full abstract

Explosive eruptions that occur with little or no precursory unrest (less than a month) pose the greatest hazards from volcanoes to nearby populations. Here we focus on the preeruptive conditions for these explosive events, their triggers and how these eruptions evolve. We concentrate on Kelud volcano, where we have conducted a set of petrological experiments to understand preeruptive storage conditions for several recent eruptions. For the 2014 explosive eruption, we combine this with an analysis of interferometric synthetic aperture radar measured deformation. Our data suggest that both explosive and effusive eruptions at Kelud are sourced from a magma storage system at 2–4 km. However, explosive eruptions are fed by magma stored under relatively cool (~1000 °C) and water‐saturated conditions, whereas effusive eruptions are fed by slightly hotter (~1050 °C), water‐undersaturated magmas. We propose that the initial phase of the 2014 eruption was triggered by volatile overpressure, which then fostered top‐down decompression tapping discrete magma bodies. By compiling a global data set of monitoring signatures of explosive eruptions, we show that the onset of unrest rarely points to the shallow ascent of magma to the surface, as ascent mostly occurs in a matter of hours or minutes. We relate the timescale of preeruptive unrest to eruption triggering mechanisms, with yearly/decadal periods of unrest relating to magma injection events (which may or may not precede a magmatic eruption), whereas internal triggering (e.g., second boiling) of an already present, cooling magma body can lead to explosive eruptions with little warning.

Keywords: petrology; explosive eruptions; 2014 eruption; eruptions little; magma

Journal Title: Geochemistry, Geophysics, Geosystems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.