LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alternative particle formation pathways in the Eastern Tropical North Pacific’s biological carbon pump

Photo from wikipedia

A fraction of organic carbon produced in the oceans by phytoplankton sinks storing 5–15 gigatonnes of carbon annually in the ocean interior. The accepted paradigm is that rapid aggregation of… Click to show full abstract

A fraction of organic carbon produced in the oceans by phytoplankton sinks storing 5–15 gigatonnes of carbon annually in the ocean interior. The accepted paradigm is that rapid aggregation of phytoplankton cells occurs, forming large, fresh particles which sink quickly; this concept is incorporated into ecosystem models used to predict the future climate. Here we demonstrate a slower, less efficient export pathway in the Eastern Tropical North Pacific. Lipid biomarkers suggest that the large, fast‐sinking particles found beneath the mixed layer are compositionally distinct from those found in the mixed layer and thus not directly and efficiently formed from phytoplankton cells. We postulate that they are formed from the in situ aggregation of smaller, slow‐sinking particles over time in the mixed layer itself. This export pathway is likely widespread where smaller phytoplankton species dominate. Its lack of representation in biogeochemical models suggests that they may be currently overestimating the ability of the oceans to store carbon if large, fast‐sinking, labile particles dominate simulated particle export.

Keywords: eastern tropical; carbon; particle; north pacific; tropical north

Journal Title: Journal of Geophysical Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.