LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Convective Precipitation Forecasts Using Ensemble‐Based Background Error Covariance in 3DVAR Radar Assimilation System

Photo by ewxy from unsplash

Skillful quantitative precipitation forecast using the numerical weather prediction model relies on an accurate estimate of the atmospheric state as an initial condition. Variational assimilation methods (VAR) have the potential… Click to show full abstract

Skillful quantitative precipitation forecast using the numerical weather prediction model relies on an accurate estimate of the atmospheric state as an initial condition. Variational assimilation methods (VAR) have the potential to provide improved initial state estimation to the numerical weather prediction model using observations, prior data (background), and their respective error covariance. The quality of variational assimilation hinges on the background error statistics (BES) as it weights the error in prior state and determines the spread of assimilated observations in model space. Traditional approaches used to model stationary BES in a three‐dimensional variational assimilation system often fail to represent the model error in BES. In this study, we have proposed an ensemble method using Stochastically Perturbed Parameterization Tendency to represent the model error in BES. The characteristics of the proposed BES are compared with the traditional approaches using the National Meteorological Centre method for different control variables choices. We have further tested the performance of the proposed method in improving the skill of precipitation forecast for an extreme rainfall event, which caused devastating flood over Chennai city, India, on December 2015. Results demonstrate that the use of the proposed method results in better forecast skill of convective precipitation in terms of both position and intensity than traditional National Meteorological Centre‐based BES. Best results are obtained when zonal and meridional momentum control variables are used for modeling ensemble‐based BES.

Keywords: assimilation; background error; model; error; precipitation; error covariance

Journal Title: Earth and Space Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.