LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aerosol Total Volume Estimation From Wavelength‐ and Size‐Resolved Scattering Coefficient Data: A New Method

Photo from wikipedia

While the importance of supermicron particles on human health and climate is well recognized, knowledge of their size‐related properties remains elusive. Many routine near‐surface in situ measurements of aerosol properties… Click to show full abstract

While the importance of supermicron particles on human health and climate is well recognized, knowledge of their size‐related properties remains elusive. Many routine near‐surface in situ measurements of aerosol properties include size spectra of submicron particles and aerosol total scattering coefficient at three visible wavelengths and two size cutoffs. These properties are collected, for example, at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) user facility. Our study illustrates how these conventional measurements can be used to predict total particle volume (particle size <10 μm). The well‐known fact that small and large particles scatter sunlight very differently forms the basis of a new method. Our study demonstrates a good agreement between estimated and measured total volumes for five climate‐important locations. The agreement suggests that the new method can be used to predict the total particle volume from the routine data collected at numerous sites around the world.

Keywords: new method; volume; scattering coefficient; aerosol total; size

Journal Title: Earth and Space Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.