LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen Limits Carbon in Liquid Iron

Photo from wikipedia

Melting experiments were performed on the Fe‐C‐H system to 127 GPa in a laser‐heated diamond anvil cell. On the basis of in situ and ex situ sample characterizations, we found… Click to show full abstract

Melting experiments were performed on the Fe‐C‐H system to 127 GPa in a laser‐heated diamond anvil cell. On the basis of in situ and ex situ sample characterizations, we found that the solubility of carbon in liquid Fe correlates inversely with hydrogen concentration at ~60 GPa and ~3500 K, indicating that liquid Fe preferentially incorporates hydrogen rather than carbon under conditions with abundant C and H. While large amounts of both C and H may have been delivered to the growing Earth, C‐poor/H‐rich metals were likely added to the protocore in the late stages of core formation. We also obtained a melting curve of FeHx (x > 1) far beyond the pressure range in earlier determinations. Its liquidus temperature was found to be 2380 K at 135 GPa, lower than those of Fe alloyed with the other possible core light elements. Relatively low core temperature is thus supported by the presence of hydrogen.

Keywords: liquid iron; limits carbon; liquid; carbon liquid; hydrogen limits

Journal Title: Geophysical Research Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.