LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonstationary Teleconnection Between the Pacific Ocean and Arctic Sea Ice

Photo from wikipedia

Over the last 40 years observations show a teleconnection between summertime Pacific Ocean sea surface temperatures and September Arctic sea ice extent. However, the short satellite observation record has made… Click to show full abstract

Over the last 40 years observations show a teleconnection between summertime Pacific Ocean sea surface temperatures and September Arctic sea ice extent. However, the short satellite observation record has made it difficult to further examine this relationship. Here, we use 30 fully coupled general circulation models (GCMs) participating in Phase 5 of the Coupled Model Intercomparison Project to assess the ability of GCMs to simulate this teleconnection and analyze its stationarity over longer timescales. GCMs can temporarily simulate the teleconnection in continuous 40‐year segments but not over longer, centennial timescales. Each GCM exhibits considerable teleconnection variability on multidecadal timescales. Further analysis shows that the teleconnection depends on an equally nonstationary atmospheric bridge from the subequatorial Pacific Ocean to the upper Arctic troposphere. These findings indicate that the modulation of Arctic sea ice loss by subequatorial Pacific Ocean variability is not fixed in time, undermining the assumption of teleconnection stationarity as defined by the satellite record.

Keywords: arctic sea; sea ice; teleconnection; pacific ocean

Journal Title: Geophysical Research Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.