It is crucial to reduce uncertainties in our understanding of the climate impacts of short-lived climate forcers (SLCFs), in the context that their emissions/concentrations are anticipated to decrease significantly in… Click to show full abstract
It is crucial to reduce uncertainties in our understanding of the climate impacts of short-lived climate forcers (SLCFs), in the context that their emissions/concentrations are anticipated to decrease significantly in the coming decades worldwide. Using the Community Earth System Model (CESM1), we performed time-slice experiments to investigate the effective radiative forcing (ERF) and climate responses to 1970-2010 changes in well-mixed greenhouse gases, anthropogenic aerosols, as well as tropospheric and stratospheric ozone. Once the present-day climate has fully responded to 1970-2010 changes in all forcings, both the global mean temperature and precipitation responses are twice as large as the transient ones, with wet regions getting wetter, and dry regions drier. The temperature response per unit ERF for short-lived species varies considerably across many factors including forcing agents, and the magnitudes and locations of emission changes. This suggests that the ERF should be used
               
Click one of the above tabs to view related content.