LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning

Photo from wikipedia

The quantification of factors leading to harmfully high levels of particulate matter (PM) remains challenging. This study presents a novel approach using a statistical model that is trained to predict… Click to show full abstract

The quantification of factors leading to harmfully high levels of particulate matter (PM) remains challenging. This study presents a novel approach using a statistical model that is trained to predict hourly concentrations of particles smaller than 10 μm (PM10) by combining satellite‐borne Aerosol Optical Depth (AOD) with meteorological and land‐use parameters. The model is shown to accurately predict PM10 (overall R2=0.77, RMSE=7.44 μg/m3) for measurement sites in Germany. The capability of satellite observations to map and monitor surface air pollution is assessed by investigating the relationship between AOD and PM10 in the same modelling setup. Sensitivity analyses show that important drivers of modelled PM10 include multi‐day mean wind flow, boundary layer height (BLH), day of year (DOY) and temperature. Different mechanisms associated with elevated PM10 concentrations are identified in winter and summer. In winter, mean predictions of PM10 concentrations >35 μg/m3 occur when BLH is below ~500m. Paired with multi‐day easterly wind flow, mean model predictions surpass 40 μg/m3 of PM10. In summer, PM10 concentrations seemingly are less driven by meteorology, but by emission or chemical particle formation processes, which are not included in the model. The relationship between AOD and predicted PM10 concentrations depends to a large extent on ambient meteorological conditions. Results suggest that AOD can be used to assess air quality at ground level in a machine learning approach linking it with meteorological conditions.

Keywords: machine learning; pm10; pm10 concentrations; air; air quality

Journal Title: Journal of Geophysical Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.