LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Faulting Processes Unveiled by Magnetic Properties of Fault Rocks

Photo from wikipedia

As iron‐bearing minerals—ferrimagnetic minerals in particular—are sensitive to stress, temperature, and presence of fluids in fault zones, their magnetic properties provide valuable insights into physical and chemical processes affecting fault… Click to show full abstract

As iron‐bearing minerals—ferrimagnetic minerals in particular—are sensitive to stress, temperature, and presence of fluids in fault zones, their magnetic properties provide valuable insights into physical and chemical processes affecting fault rocks. Here, we review the advances made in magnetic studies of fault rocks in the past three decades. We provide a synthesis of the mechanisms that account for the magnetic changes in fault rocks and insights gained from magnetic research. We also integrate nonmagnetic approaches in the evaluation of the magnetic properties of fault rocks. Magnetic analysis unveils microscopic processes operating in the fault zones such as frictional heating, energy dissipation, and fluid percolation that are otherwise difficult to constrain. This makes magnetic properties suited as a “strain indicator,” a “geothermometer,” and a “fluid tracer” in fault zones. However, a full understanding of faulting‐induced magnetic changes has not been accomplished yet. Future research should focus on detailed magnetic property analysis of fault zones including magnetic microscanning and magnetic fabric analysis. To calibrate the observations on natural fault zones, laboratory experiments should be carried out that enable to extract the exact physicochemical conditions that led to a certain magnetic signature. Potential avenues could include (1) magnetic investigations on natural and synthetic fault rocks after friction experiments, (2) laboratory simulation of fault fluid percolation, (3) paleomagnetic analysis of postkinematic remanence components associated with faulting processes, and (4) synergy of interdisciplinary approaches in mineral‐magnetic studies. This would help to place our understanding of the microphysics of faulting on a much stronger footing.

Keywords: fault rocks; fault zones; faulting processes; properties fault; magnetic properties; fault

Journal Title: Reviews of Geophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.