LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon Dioxide Emissions During the 2018 Kilauea Volcano Eruption Estimated Using OCO‐2 Satellite Retrievals

Photo from wikipedia

This study applies Orbiting Carbon Observatory‐2 (OCO‐2) column‐averaged dry‐air mole fractions of CO2 (XCO2) to constrain CO2 fluxes during the 2018 Kilauea volcano eruption. CO2 enhancements (ΔXCO2) of 1–2 parts… Click to show full abstract

This study applies Orbiting Carbon Observatory‐2 (OCO‐2) column‐averaged dry‐air mole fractions of CO2 (XCO2) to constrain CO2 fluxes during the 2018 Kilauea volcano eruption. CO2 enhancements (ΔXCO2) of 1–2 parts per million were observed far downwind of the eruption coincident with elevated sulfur dioxide (SO2) concentrations. The estimated CO2 emission rate was 77.1 ± 49.6 kilotons per day (kt day−1) on 11 July 2018 with most of the uncertainty from modeled winds and XCO2 retrievals. This emission rate is higher compared to flux estimates made with ground‐based measurements (30–40 kt day−1). However, cross‐sectional flux estimates made using OCO‐2 XCO2 observations will inherently be larger than ground‐based measurements near the source as these estimates comprise all sources of CO2 in the vicinity of the eruption (e.g., vegetation and soil burning). This study for the first time uses satellite XCO2 data ~200 km downwind to estimate CO2 emissions from a major volcanic eruption.

Keywords: 2018 kilauea; kilauea volcano; eruption; volcano eruption; using oco

Journal Title: Geophysical Research Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.