LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relationship Between Subduction Erosion and the Up‐Dip Limit of the 2014 Mw 8.1 Iquique Earthquake

Photo from wikipedia

The aftershock distribution of the 2014 Mw 8.1 Iquique earthquake offshore northern Chile, identified from a long‐term deployment of ocean bottom seismometers installed eight months after the mainshock, in conjunction… Click to show full abstract

The aftershock distribution of the 2014 Mw 8.1 Iquique earthquake offshore northern Chile, identified from a long‐term deployment of ocean bottom seismometers installed eight months after the mainshock, in conjunction with seismic reflection imaging, provides insights into the processes regulating the updip limit of coseismic rupture propagation. Aftershocks updip of the mainshock hypocenter frequently occur in the upper plate and are associated with normal faults identified from seismic reflection data. We propose that aftershock seismicity near the plate boundary documents subduction erosion that removes mass from the base of the wedge and results in normal faulting in the upper plate. The combination of very little or no sediment accretion and subduction erosion over millions of years has resulted in a very weak and aseismic frontal wedge. Our observations thus link the shallow subduction zone seismicity to subduction erosion processes that control the evolution of the overriding plate.

Keywords: iquique earthquake; 2014 iquique; subduction; subduction erosion

Journal Title: Geophysical Research Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.