Previous work has established that warming is associated with an increase in dry static stability, a weakening of the tropical circulation, and a decrease in the convective mass flux. Using… Click to show full abstract
Previous work has established that warming is associated with an increase in dry static stability, a weakening of the tropical circulation, and a decrease in the convective mass flux. Using a set of idealized simulations with specified surface warming and superparameterized convection, we find support for these previous conclusions. We use an energy and mass balance framework to develop a simple diagnostic that links the fractional area covered by the region of upward motion to the strength of the mean circulation. We demonstrate that the diagnostic works well for our idealized simulations and use it to understand how changes in tropical ascent area and the strength of the mean circulation relate to changes in heating in the ascending and descending regions. We show that the decrease in the strength of the mean circulation can be explained by the relatively slow rate at which atmospheric radiative cooling intensifies with warming. In our simulations, decreases in tropical ascent area are balanced by increases in nonradiative heating in convective regions. Consistent with previous work, we find a warmingâinduced decrease in the mean convective mass flux. However, when we condition by the sign of the mean vertical motion, the warmingâinduced changes in the convective mass flux are nonmonotonic and opposite between the ascending and descending regions.
               
Click one of the above tabs to view related content.