LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of the Taiwan Earth System Model in Simulating Climate Variability Compared With Observations and CMIP6 Model Simulations

Photo by thinkmagically from unsplash

This study evaluates the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the observed climate variability in the historical simulation of the Coupled Model Intercomparison Phase… Click to show full abstract

This study evaluates the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the observed climate variability in the historical simulation of the Coupled Model Intercomparison Phase 6 (CMIP6). TaiESM1 is developed on the basis of the Community Earth System Model version 1.2.2, with the inclusion of several new physical schemes and improvements in the atmosphere model. The new additions include an improved triggering function in the cumulus convection scheme, a revised distribution‐based formula in the cloud fraction scheme, a new aerosol scheme, and a unique scheme for three‐dimensional surface absorption of shortwave radiation that accounts for the influence of complex terrains. In contrast to the majority of model evaluation processes, which focus mainly on the climatological mean, this evaluation focuses on climate variability parameters, including the diurnal rainfall cycle, precipitation extremes, synoptic eddy activity, intraseasonal fluctuation, monsoon evolution, and interannual and multidecadal atmospheric and oceanic teleconnection patterns. A series of intercomparisons between the simulations of TaiESM1 and CMIP6 models and observations indicate that TaiESM1, a participating model in CMIP6, can realistically simulate the observed climate variability at various time scales and are among the leading CMIP6 models in terms of many key climate features.

Keywords: model; system model; climate variability; earth system

Journal Title: Journal of Advances in Modeling Earth Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.