LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Drying Regimes of Non‐Perennial Rivers and Streams

Photo from wikipedia

The flow regime paradigm is central to the aquatic sciences, where flow drives critical functions in lotic systems. Non‐perennial streams comprise the majority of global river length, thus we extended… Click to show full abstract

The flow regime paradigm is central to the aquatic sciences, where flow drives critical functions in lotic systems. Non‐perennial streams comprise the majority of global river length, thus we extended this paradigm to stream drying. Using 894 USGS gages, we isolated 25,207 drying events from 1979 to 2018, represented by a streamflow peak followed by no flow. We calculated hydrologic signatures for each drying event and using multivariate statistics, grouped events into drying regimes characterized by: (a) fast drying, (b) long no‐flow duration, (c) prolonged drying following low antecedent flows, (d) drying without a distinctive hydrologic signature. 77% of gages had more than one drying regime at different times within the study period. Random forests revealed land cover/use are more important to how a river dries than climate or physiographic characteristics. Clustering stream drying behavior may allow practitioners to more systematically adapt water resource management practices to specific drying regimes or rivers.

Keywords: perennial rivers; non perennial; regimes non; rivers streams; drying regimes

Journal Title: Geophysical Research Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.