LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Orbital Forcing of Martian Climate Revealed in a South Polar Outlier Ice Deposit

Photo from wikipedia

Deciphering paleoclimate on Mars has been a driving goal of Martian science for decades. Most research has addressed this issue by studying Mars' large polar layered deposits (PLDs) as a… Click to show full abstract

Deciphering paleoclimate on Mars has been a driving goal of Martian science for decades. Most research has addressed this issue by studying Mars' large polar layered deposits (PLDs) as a paleoclimate proxy, but the certainty to which we know the link between climate and orbit is debated. Here, we instead consider the record of other, smaller ice deposits located within craters separated from the PLDs using images from NASA's High Resolution Imaging Science Experiment camera and signal processing techniques. We show that the climate record in Burroughs Crater (72.3°S, 116.6°E) contains robust evidence of orbital forcing, with periodicities that have wavelengths of 15.6 and 6.5 m. The ratio of these dominant wavelengths is 2.4, the same as the ratio between the periods of Mars' obliquity changes and orbital precession. This result suggests orbital control of recent Mars climate, and would imply an average ice accumulation rate of 0.13 mm/yr over 4.5 Myr in this region.

Keywords: martian climate; climate; ice; forcing martian; climate revealed; orbital forcing

Journal Title: Geophysical Research Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.