LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Skillful Coupled Atmosphere‐Ocean Forecasts on Interannual to Decadal Timescales Using a Linear Inverse Model

Photo by thinkmagically from unsplash

There are two major challenges to improving interannual to decadal forecasts: (a) consistently initializing the coupled system so that variability is not dominated by initial imbalances, and (b) having a… Click to show full abstract

There are two major challenges to improving interannual to decadal forecasts: (a) consistently initializing the coupled system so that variability is not dominated by initial imbalances, and (b) having a large sample of different initial conditions on which to test forecast skill. The second challenge requires consideration of time periods not only outside the recent period of intensive ocean observation, but also before the instrumental era, which increases the importance of the first challenge. Forecasts prior to the 1850s isolate internally generated sources of variability by removing the majority of anthropogenic forcing, and the sparse observational record during this time period motivates the use of paleoclimate proxy data. We address these issues by using a linear inverse model (LIM) approach and a recent proxy‐based reconstruction over the last millennium at annual resolution. The reconstruction is used to train, initialize, and validate LIM forecasts. The LIM trained on paleo‐data assimilated using a LIM trained on global climate model (GCM) simulation data outperforms a LIM trained on raw GCM data at forecast leads longer than 2 years for in‐sample experiments, and beyond 4‐year leads in most out‐of‐sample experiments validated on instrumental data. The most skillful normal mode of the paleo‐data LIM for the instrumental experiment represents a persistent pattern with a longer decay time than for the GCM‐LIM's modes, which accounts for the outperformance at longer leads. The paleo‐data LIM is consequently more sensitive to ocean initialization, which is reflected in forecasts during the instrumental era where ocean reanalyses exhibit large uncertainty.

Keywords: using linear; linear inverse; model; interannual decadal; inverse model; lim trained

Journal Title: Earth and Space Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.