LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amplitude Dependence of Nonlinear Precipitation Blocking of Relativistic Electrons by Large Amplitude EMIC Waves

Photo by jawis from unsplash

Recent work has shown that ElectroMagnetic Ion Cyclotron (EMIC) waves tend to occur in four distinct regions, each having their own characteristics and morphology. Here, we use nonlinear test‐particle simulations… Click to show full abstract

Recent work has shown that ElectroMagnetic Ion Cyclotron (EMIC) waves tend to occur in four distinct regions, each having their own characteristics and morphology. Here, we use nonlinear test‐particle simulations to examine the range of energetic electron scattering responses to two EMIC wave groups that occur at low L‐shells and overlap the outer radiation belt electrons. The first group consists of low‐density, H‐band region b waves, and the second group consists of high‐density, He‐band region c waves. Results show that while low‐density EMIC waves cannot precipitate electrons below ∼16 MeV, the high density EMIC waves drive a range of linear and nonlinear behaviors including phase bunching and trapping. In particular, a nonlinear force bunching effect can rapidly advect electrons at low pitch‐angles near the minimum resonant energy to larger pitch angles, effectively blocking precipitation and loss. This effect contradicts conventional expectations and may have profound implication for observational campaigns.

Keywords: emic waves; density; dependence nonlinear; nonlinear precipitation; amplitude dependence

Journal Title: Geophysical Research Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.