LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerating the Lagrangian Particle Tracking in Hydrologic Modeling to Continental‐Scale

Photo from wikipedia

Unprecedented climate change and anthropogenic activities have induced increasing ecohydrological problems, motivating the development of large‐scale hydrologic modeling for solutions. Water age/quality is as important as water quantity for understanding… Click to show full abstract

Unprecedented climate change and anthropogenic activities have induced increasing ecohydrological problems, motivating the development of large‐scale hydrologic modeling for solutions. Water age/quality is as important as water quantity for understanding the terrestrial water cycle. However, scientific progress in tracking water parcels at large‐scale with high spatiotemporal resolutions is far behind that in simulating water balance/quantity owing to the lack of powerful modeling tools. EcoSLIM is a particle tracking model working with ParFlow‐CLM that couples integrated surface‐subsurface hydrology with land surface processes. Here, we demonstrate a parallel framework on distributed, multi‐Graphics Processing Unit platforms with Compute Unified Device Architecture‐Aware Message Passing Interface for accelerating EcoSLIM to continental‐scale. In tests from catchment‐, to regional‐, and then to continental‐scale using 25‐million to 1.6‐billion particles, EcoSLIM shows significant speedup and excellent parallel performance. The parallel framework is portable to atmospheric and oceanic particle tracking models, where the parallelization is inadequate, and a standard parallel framework is also absent. The parallelized EcoSLIM is a promising tool to accelerate our understanding of the terrestrial water cycle and the upscaling of subsurface hydrology to Earth System Models.

Keywords: scale; water; hydrology; particle tracking; continental scale

Journal Title: Journal of Advances in Modeling Earth Systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.