LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intermediate Infrared Spectroscopy of Pyroxene: Determination of Ca‐Mg‐Fe Composition in the 4–8 Micron Wavelength Range

Photo from wikipedia

Although pyroxene has been detected remotely across the Solar System, limited information is available from infrared remote sensing about the Mg‐Fe composition of pyroxene, and distinguishing between augite (20 <… Click to show full abstract

Although pyroxene has been detected remotely across the Solar System, limited information is available from infrared remote sensing about the Mg‐Fe composition of pyroxene, and distinguishing between augite (20 < CaSiO3 < 45) and diopside‐hedenbergite (CaSiO3 > 45) remains challenging. The characteristics of pyroxene in the intermediate infrared range (4–8 μm), meanwhile, have not been documented. Using reflectance spectra of 72 samples ranging across the pyroxene quadrilateral, we investigate the effect of variations in Mg# (Mg/[Mg + Fe] × 100) and Ca‐content on the positions of strong and well‐defined spectral bands at ∼5.1 and ∼5.3 μm in high‐Ca pyroxene and ∼5.2 in low‐Ca pyroxene. We find that the 5.1, 5.2, and 5.3 μm bands move to shorter wavelengths as Mg# increases, whereas Ca‐content does not significantly affect the positions of these bands, enabling the determination of pyroxene Mg# directly from band positions alone. We also find that the ∼5.1 μm band is significantly more distinctive in diopside‐hedenbergite and the ∼5.3 μm band significantly more so in augite. Therefore, the 5.1, 5.2, and 5.3 μm spectral bands enable discrimination among diopside‐hedenbergite, low‐Ca pyroxene, and augite. Additionally, the 5.1, 5.2, and 5.3 μm bands enable direct determination of Mg# of diopside‐hedenbergite, low‐Ca pyroxene, and augite within ±23, ±10, and ±29 mol% Mg‐Fe, respectively.

Keywords: spectroscopy; composition; determination; pyroxene; diopside hedenbergite; intermediate infrared

Journal Title: Earth and Space Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.