Children born to mothers infected with the human immunodeficiency virus (HIV) during pregnancy experience increased risk of neurocognitive impairment. In Botswana, HIV infection is common among youth, but standardized cognitive… Click to show full abstract
Children born to mothers infected with the human immunodeficiency virus (HIV) during pregnancy experience increased risk of neurocognitive impairment. In Botswana, HIV infection is common among youth, but standardized cognitive screening is limited. The Penn Computerized Neurocognitive Battery (PennCNB), a tool that streamlines evaluation of neurocognitive functioning, was culturally adapted for use among youth in this high-burden, low-resource setting. The present study examined the structural validity of the culturally adapted PennCNB. A cohort of 7-17-year-old children living with HIV (HIV +) and HIV-exposed-uninfected (HEU) children were enrolled from the Botswana-Baylor Children's Clinical Centre of Excellence in Gaborone, Botswana. Confirmatory and exploratory factor analyses were performed on speed, accuracy, and efficiency measures for 13 PennCNB tests. Fit of the confirmatory factor analysis was acceptable, which supports the design of the battery measuring four neurocognitive domains: Executive functioning, episodic memory, complex cognition, and sensorimotor/processing speed. However, the model revealed high interfactor correlation. Exploratory factor analysis suggested that tests assessing executive functioning and sensorimotor/processing speed clustered together rather than forming differentiable factors. Overall, this research provides valuable insight into the structural validity of a neurocognitive battery adapted for use in a non-Western setting, suggesting that the PennCNB could serve as a useful tool for the assessment of neurocognitive function in Botswana and, potentially, other resource-limited settings. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
               
Click one of the above tabs to view related content.