LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity

Photo from wikipedia

Obesity and associated metabolic diseases are characterized by a chronic low-grade inflammatory state with the infiltration of many inflammatory cells, especially macrophages. Immune molecules, including some cytokines, have a close… Click to show full abstract

Obesity and associated metabolic diseases are characterized by a chronic low-grade inflammatory state with the infiltration of many inflammatory cells, especially macrophages. Immune molecules, including some cytokines, have a close relationship with metabolism. Interleukin (IL)-25 is a member of the IL-17 cytokine family that can regulate macrophages and alleviate some metabolic dysfunction; however, its role and mechanisms in lipid metabolism remain to be extensively clarified. Human serum and liver biopsy specimens, high-fat diet-induced obesity mice and DB/DB (Lepr−/−) animal models were used to examine IL-25 expression in obesity and nonalcoholic fatty liver diseases (NAFLD). To observe the role of IL-25 in lipid metabolism, model mice were administered with IL-25 or adoptively transferred with IL-25-educated macrophages in vivo, whereas bone marrow-derived macrophages, the macrophage cell line RAW264.7 and adipocytes differentiated from 3T3-L1 were used in vitro. IL-25 was decreased in NAFLD patients and obese mice. In addition, IL-25 reduced body weight gain and lipid accumulation, enhanced lipid uptake by macrophages and increased the expression of lipolysis and β-oxidation enzymes via alternatively activating macrophages. IL-25 also promoted lipolysis and suppressed lipogenesis in adipocytes co-cultured with the IL-25-educated macrophages. Furthermore, IL-25 improved the mitochondrial respiratory capacity and oxygen consumption rate of macrophages and produced more NAD+/NADH and ATP. In conclusion, IL-25 can stimulate M2 macrophage polarization and thereby promote lipolysis and mitochondrial respiratory capacity, highlighting the potential for IL-25 to be used as a therapeutic agent against obesity and associated metabolic syndromes.

Keywords: mitochondrial respiratory; obesity; lipolysis; respiratory capacity

Journal Title: Cellular and Molecular Immunology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.