LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Implicating candidate genes at GWAS signals by leveraging topologically associating domains

Photo from wikipedia

Genome-wide association studies (GWAS) have contributed significantly to the understanding of complex disease genetics. However, GWAS only report association signals and do not necessarily identify culprit genes. As most signals… Click to show full abstract

Genome-wide association studies (GWAS) have contributed significantly to the understanding of complex disease genetics. However, GWAS only report association signals and do not necessarily identify culprit genes. As most signals occur in non-coding regions of the genome, it is often challenging to assign genomic variants to the underlying causal mechanism(s). Topologically associating domains (TADs) are primarily cell-type-independent genomic regions that define interactome boundaries and can aid in the designation of limits within which an association most likely impacts gene function. We describe and validate a computational method that uses the genic content of TADs to prioritize candidate genes. Our method, called 'TAD_Pathways', performs a Gene Ontology (GO) analysis over genes that reside within TAD boundaries corresponding to GWAS signals for a given trait or disease. Applying our pipeline to the bone mineral density (BMD) GWAS catalog, we identify ‘Skeletal System Development’ (Benjamini–Hochberg adjusted P=1.02x10−5) as the top-ranked pathway. In many cases, our method implicated a gene other than the nearest gene. Our molecular experiments describe a novel example: ACP2, implicated near the canonical ‘ARHGAP1’ locus. We found ACP2 to be an important regulator of osteoblast metabolism, whereas ARHGAP1 was not supported. Our results via BMD, for example, demonstrate how basic principles of three-dimensional genome organization can define biologically informed association windows.

Keywords: associating domains; gwas signals; association; candidate genes; gene; topologically associating

Journal Title: European Journal of Human Genetics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.