LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene

Photo from wikipedia

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules… Click to show full abstract

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y2@C80 and Dy2@C80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy2@C80(CH2Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy2@C80(CH2Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μB with a dysprosium-electron exchange constant of 32 cm−1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.

Keywords: single molecule; unpaired electron; electron trapped; dy2 c80; lanthanide ions

Journal Title: Nature Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.