LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbial substrate preference dictated by energy demand, not supply

Photo from wikipedia

Growth substrates that maximize energy yield are widely thought to be utilized preferentially by microorganisms. However, observed distributions of microorganisms and their activities often deviate from predictions based solely on… Click to show full abstract

Growth substrates that maximize energy yield are widely thought to be utilized preferentially by microorganisms. However, observed distributions of microorganisms and their activities often deviate from predictions based solely on thermodynamic considerations of substrate energy supply. Here we present observations of the bioenergetics and growth yields of a metabolically flexible, thermophilic strain of the archaeon Acidianus when grown autotrophically on minimal medium with hydrogen (H2) or elemental sulfur (S°) as an electron donor, and S° or ferric iron (Fe3+) as an electron acceptor. Thermodynamic calculations indicate that S°/Fe3+ and H2/Fe3+ yield three- and four-fold more energy per mol electron transferred, respectively, than the H2/S° couple. However, biomass yields in Acidianus cultures provided with H2/S° were eight-fold greater than when provided S°/Fe3+ or H2/Fe3+, indicating the H2/S° redox couple is preferred. Indeed, cells provided with all three growth substrates (H2, Fe3+, and S°) grew preferentially by reduction of S° with H2. We conclude that substrate preference is dictated by differences in the energy demand of electron transfer reactions in Acidianus when grown with different substrates, rather than substrate energy supply.

Keywords: supply; energy demand; energy; substrate preference; preference dictated

Journal Title: Nature geoscience
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.