LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein

Photo by museumsvictoria from unsplash

Argonaute (Ago) proteins in eukaryotes are known as key players in post-transcriptional gene silencing1, while recent studies on prokaryotic Agos hint at their role in the protection against invading DNA2,3.… Click to show full abstract

Argonaute (Ago) proteins in eukaryotes are known as key players in post-transcriptional gene silencing1, while recent studies on prokaryotic Agos hint at their role in the protection against invading DNA2,3. Here, we present crystal structures of the apo enzyme and a binary Ago-guide complex of the archaeal Methanocaldococcus jannaschii (Mj) Ago. Binding of a guide DNA leads to large structural rearrangements. This includes the structural transformation of a hinge region containing a switch helix, which has been shown for human Ago2 to be critical for the dynamic target search process4–6. To identify key residues crucial for MjAgo function, we analysed the effect of several MjAgo mutants. We observe that the nature of the 3′ and 5′ nucleotides in particular, as well as the switch helix, appear to impact MjAgo cleavage activity. In summary, we provide insights into the molecular mechanisms that drive DNA-guided DNA silencing by an archaeal Ago.

Keywords: dna; archaeal dna; structural mechanistic; insights archaeal; dna guided; mechanistic insights

Journal Title: Nature Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.