LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dispersive charge density wave excitations in Bi2Sr2CaCu2O8+[delta]

Photo by bagasvg from unsplash

Ultrahigh-resolution resonant inelastic X-ray scattering shows how dispersive charge density wave excitations influence the charge and lattice degrees of freedom in a high-Tc cuprate, pointing to a connection to the… Click to show full abstract

Ultrahigh-resolution resonant inelastic X-ray scattering shows how dispersive charge density wave excitations influence the charge and lattice degrees of freedom in a high-Tc cuprate, pointing to a connection to the mysterious pseudogap state. Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations1,2,3,4,5,6,7,8,9,10, which coexist with superconductivity. Although the CDW had been predicted by theory11,12,13, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap10,14. Here, we use ultrahigh-resolution resonant inelastic X-ray scattering to reveal new CDW character in underdoped Bi2.2Sr1.8Ca0.8Dy0.2Cu2O8+δ. At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T∗, the CDW persists, but the associated excitations significantly weaken with an indication of CDW wavevector shift. The dispersive CDW excitations, phonon anomaly, and analysis of the CDW wavevector provide a comprehensive momentum-space picture of complex CDW behaviour and point to a closer relationship with the pseudogap state.

Keywords: density wave; charge density; cdw; charge; dispersive charge

Journal Title: Nature Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.