LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing

Photo from academic.microsoft.com

Water droplets skid across hot surfaces, hovering imperceptibly as they undergo rapid vaporization. Elastic solids are now shown to exhibit a variant of this behaviour, engaging in sustained bouncing by… Click to show full abstract

Water droplets skid across hot surfaces, hovering imperceptibly as they undergo rapid vaporization. Elastic solids are now shown to exhibit a variant of this behaviour, engaging in sustained bouncing by coupling vapour release to elastic deformation. The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover1,2. Although well understood for liquids1,2,3,4,5,6,7,8,9,10,11,12,13,14 and stiff sublimable solids15,16,17,18, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids—the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics.

Keywords: leidenfrost effect; coupling leidenfrost; effect elastic; sustained bouncing; effect; bouncing coupling

Journal Title: Nature Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.