LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Patient-derived xenografts as in vivo models for research in urological malignancies

Photo by _louisreed from unsplash

Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that target urological tumours from receiving regulatory approval. Patient-derived xenograft (PDX)… Click to show full abstract

Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that target urological tumours from receiving regulatory approval. Patient-derived xenograft (PDX) models are characterized by direct engraftment of patient-derived tumour fragments into immunocompromised mice. PDXs can maintain the original histology, as well as the molecular and genetic characteristics of the source tumour. Thus, PDX models have various advantages over conventional cell-line-derived xenograft (CDX) and other models, which has resulted in an increase in the use of urological tumour PDXs in the analysis of tumour biology and, importantly, for drug development and treatment decisions in personalized medicine. PDX models of urological malignancies have great potential to be used for both basic and clinical research, but limitations exist and need to be overcome. In particular, several agents targeting the immune system have shown promising results in kidney and bladder cancer; however, establishing PDX models in mice with an intact immune system so that an immune response against the tumour is triggered is important to investigate these new therapeutics. Moreover, international collaboration to share PDX models is essential for research concerning fatal urological tumours.

Keywords: urological malignancies; research; pdx models; derived xenografts; patient derived; urological tumours

Journal Title: Nature Reviews Urology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.