The highly homeostasis-resistant nature of cancer cells leads to their escape from treatment and to liver metastasis, which in turn makes pancreatic ductal adenocarcinoma (PDAC) difficult to treat, especially the… Click to show full abstract
The highly homeostasis-resistant nature of cancer cells leads to their escape from treatment and to liver metastasis, which in turn makes pancreatic ductal adenocarcinoma (PDAC) difficult to treat, especially the squamous/epithelial-to-mesenchymal transition (EMT)-like subtype. As the molecular mechanisms underlying tumour heterogeneity remain elusive, we investigated whether epigenetic regulation might explain inter-individual differences in the progression of specific subtypes. DNA methylation profiling performed on cancer tissues prior to chemo/radiotherapy identified one hypermethylated CpG site (CpG6882469) in the VAV1 gene body that was correlated with demethylation of two promoter CpGs (CpG6772370/CpG6772811) in both PDAC and peripheral blood. Transforming growth factor β treatment induced gene-body hypermethylation, dissociation of DNMT1 from the promoter, and VAV1 expression via SMAD4 and mutant KrasG12D. Pharmacological inhibition of TGFβ-VAV1 signalling decreased the squamous/EMT-like cancer cells, promoted nuclear VAV1 localization, and enhanced the efficacy of gemcitabine in prolonging the survival of KPfl/flC mice. Together, the three VAV1 CpGs serve as biomarkers for prognosis and early detection, and the TGFβ-VAV1 axis represents a therapeutic target.
               
Click one of the above tabs to view related content.