The group 2 metabotropic glutamate receptor (mGluR2/3) agonist, pomaglumetad methionil (POM), showed promise as a novel antipsychotic in preclinical research but failed to show efficacy in clinical trials, though it… Click to show full abstract
The group 2 metabotropic glutamate receptor (mGluR2/3) agonist, pomaglumetad methionil (POM), showed promise as a novel antipsychotic in preclinical research but failed to show efficacy in clinical trials, though it has been suggested that it may be effective in certain patient populations. Although previous studies have shown that mGluR2/3 agonists have no effect on dopamine (DA) in wild type rats, we used the methylzoxymethanol acetate (MAM) model to determine whether POM may indirectly normalize DA neuron activity in a model representative of the hyperdopaminergic state thought to underlie psychosis, compared to SAL rats, using in vivo, anesthetized, electrophysiological recordings. POM dose-dependently reduced the number of spontaneously active DA neurons in the VTA of MAM rats to control levels without affecting DA firing in SAL rats, which persisted following 14d repeated treatment with POM. In female MAM rats, POM significantly reduced DA neuron population activity only during proestrous and estrous stages. MAM rats also demonstrated dose-dependent improvement in novel object recognition following acute POM, which was not observed in SAL rats. Similar to the MAM rats, DA neuron population activity was increased in a hippocampal-dependent manner following acute restraint stress. Administration of POM prior to 2 h restraint stress prevented the restraint-induced increase in DA neuron population activity, and this effect was blocked by pretreatment with an mGluR2/3 antagonist. Thus, the ability of POM to reduce the hyperdopaminergic activity in both MAM rats and in wild type rats following restraint stress suggests that it can indirectly regulate DA neuron activity, which may underlie its potential therapeutic effects.
               
Click one of the above tabs to view related content.