LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of angiogenic signaling molecules associated with reactive thrombocytosis in an iron-deficient rat model

Photo by eriic from unsplash

Iron deficiency anemia (IDA)-induced reactive thrombocytosis can occur in children and adults. The underlying mechanism for this phenomenon is indeterminate. Traditional cytokines such as thrombopoietin (TPO), interleukin-6 (IL-6), and IL-11… Click to show full abstract

Iron deficiency anemia (IDA)-induced reactive thrombocytosis can occur in children and adults. The underlying mechanism for this phenomenon is indeterminate. Traditional cytokines such as thrombopoietin (TPO), interleukin-6 (IL-6), and IL-11 involved in megakaryopoiesis have not been shown to be the cause. Recent studies suggest that growth factors and signaling molecules involved with angiogenesis influence the proliferation and differentiation of megakaryocytes. We investigated the possible association between angiogenic cytokines with reactive thrombocytosis due to IDA in an iron-deficient (ID) rat model. Complete blood count, iron panels, and TPO levels were measured at baseline and 5 weeks later in both control (C) and ID rats. Angiogenic cytokines were evaluated in the bone marrow in all rats. We successfully induced IDA in our rats by phlebotomy and reduced iron diet. We did not find an increase of TPO in ID rats. A review of the bone marrow showed an increase in the number of megakaryocytes, vascular structures, as well as increased intensity of stain for vascular endothelial growth factor (VEGF), and CXC chemokine receptor 4 (CXCR4) in rats with IDA compared to controls. Our results of histological bone marrow data suggest an important role for angiogenesis in the development of IDA-induced thrombocytosis. Thrombocytosis is common with IDA in both children and adults, but the mechanism is unclear. We confirmed that TPO is not the major driver of iron deficiency-associated thrombocytosis. We confirmed the increase in the number of megakaryocytes in the bone marrow despite stable TPO levels. We provided evidence supporting an important role of angiogenesis in megakaryocytopoiesis/thrombopoiesis with increased vascular structures and angiogenic cytokines in the bone marrow of iron-deficient rats. The demonstration that angiogenesis may play an important role in secondary thrombocytosis could lead to a new approach in treating symptomatic reactive thrombocytosis by targeting angiogenesis. Thrombocytosis is common with IDA in both children and adults, but the mechanism is unclear. We confirmed that TPO is not the major driver of iron deficiency-associated thrombocytosis. We confirmed the increase in the number of megakaryocytes in the bone marrow despite stable TPO levels. We provided evidence supporting an important role of angiogenesis in megakaryocytopoiesis/thrombopoiesis with increased vascular structures and angiogenic cytokines in the bone marrow of iron-deficient rats. The demonstration that angiogenesis may play an important role in secondary thrombocytosis could lead to a new approach in treating symptomatic reactive thrombocytosis by targeting angiogenesis.

Keywords: angiogenesis; thrombocytosis; iron deficient; reactive thrombocytosis; iron; bone marrow

Journal Title: Pediatric Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.