LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoribbon network formation of enzymatically synthesized cellulose oligomers through dispersion stabilization of precursor particles

Photo from wikipedia

Cellulose oligomers were synthesized via cellodextrin phosphorylase-catalyzed reactions using α-D-glucose 1-phosphate monomers and D-glucose primers. The products prepared at relatively high primer concentrations self-assembled into highly grown nanoribbon network structures.… Click to show full abstract

Cellulose oligomers were synthesized via cellodextrin phosphorylase-catalyzed reactions using α-D-glucose 1-phosphate monomers and D-glucose primers. The products prepared at relatively high primer concentrations self-assembled into highly grown nanoribbon network structures. The nanoribbons were composed of cellulose oligomers with degree-of-polymerization (DP) values of 8-9 with certain degrees of DP distribution and displayed the cellulose II allomorph. A formation mechanism for the unique nanostructures was proposed based on analyses of reaction time-dependent differences of the product solutions.

Keywords: network formation; formation enzymatically; cellulose oligomers; nanoribbon network

Journal Title: Polymer Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.