LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fracture processes of crystalline polymers using coarse-grained molecular dynamics simulations

Photo from wikipedia

AbstractMolecular simulations are powerful tools for revealing the properties of polymers at the molecular level. In particular, coarse-grained molecular dynamics simulations are useful for elucidating the deformation and fracture processes… Click to show full abstract

AbstractMolecular simulations are powerful tools for revealing the properties of polymers at the molecular level. In particular, coarse-grained molecular dynamics simulations are useful for elucidating the deformation and fracture processes of polymers. However, in the case of crystalline polymers, it is difficult to reproduce experimentally observed structures and mechanical properties using these models. This review describes our recent investigations into the deformation and fracture processes of crystalline polymers using coarse-grained molecular dynamics simulations. We were able to successfully reproduce the lamellar structure of polyethylene, which is a fundamental structural feature of this polymer, and obtain a stress–strain curve that exhibited good consistency with that observed experimentally. The molecular dynamics simulations revealed that void generation in the amorphous layers was caused by the movement of the chain ends, which is difficult to observe through experiments. The conditions required to reproduce the experimentally observed structure and mechanical properties using molecular simulations are also discussed.In this focus review, our recent investigations into the deformation and fracture processes of crystalline polymers using coarse-grained molecular dynamics simulations are described. The lamellar structure of polyethylene, a fundamental structural feature of this polymer, is successfully reproduced. Then, a stress– strain curve that exhibited good consistency with that observed experimentally is obtained. Molecular simulations are a powerful tool for elucidating the mechanisms of the deformation and fracture processes of crystalline polymers at the molecular level and this review will contribute to the development of this field of research.

Keywords: molecular dynamics; coarse grained; grained molecular; dynamics simulations; fracture processes; crystalline polymers

Journal Title: Polymer Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.