LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reducing visible aerosol generation during phacoemulsification in the era of Covid-19

Photo by davepullis from unsplash

Objective To assess potential methods of reducing visible aerosol generation during clear corneal phacoemulsification surgery in the era of Covid-19. Methods Aerosol generation during phacoemulsification was assessed using a model… Click to show full abstract

Objective To assess potential methods of reducing visible aerosol generation during clear corneal phacoemulsification surgery in the era of Covid-19. Methods Aerosol generation during phacoemulsification was assessed using a model comprising a human cadaveric corneoscleral rim mounted on an artificial anterior chamber. Typical phacoemulsification settings were used and visible aerosol production was recorded using high-speed 4K camera. Aerosolisation was evaluated under various experimental settings: Two different phacoemulsification tip sizes (2.2, 2.75 mm), varying levels of corneal moisture, the use of suction and blowing air in the surgical field, the use of hydroxypropyl methylcellulose (HPMC) coating of the cornea with a static and moving tip. Results This model demonstrates visible aerosol generation during phacoemulsification with a 2.75-mm phacoemulsification tip. No visible aerosol was noted with a 2.2-mm tip. The presence of visible aerosol was unrelated to corneal wetting. Suction in close proximity to the aerosol plume did not impact on its dispersion. Blowing air redirected the aerosol plume toward the ocular surface. Visible aerosol production was abolished when HPMC was used to coat the cornea. This effect lasted for an average of 67 ± 8 s in the static model. Visible aerosol generation was discerned during movement of the 2.2-mm tip toward the corneal wound. Conclusions We demonstrate visible aerosol production in the setting of a model of clear corneal phacoemulsification. Visible aerosol can be reduced using a 2.2-mm phacoemulsification tip and reapplying HPMC every minute during phacoemulsification.

Keywords: aerosol generation; visible aerosol; generation phacoemulsification; phacoemulsification; tip

Journal Title: Eye
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.