LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation

Photo from wikipedia

Fundus autofluorescence (AF) using adaptive optics scanning laser ophthalmoscopy (AOSLO) enables morphometric analysis of individual retinal pigmented epithelial (RPE) cells. However, only a few excitation wavelengths in the visible and… Click to show full abstract

Fundus autofluorescence (AF) using adaptive optics scanning laser ophthalmoscopy (AOSLO) enables morphometric analysis of individual retinal pigmented epithelial (RPE) cells. However, only a few excitation wavelengths in the visible and near-infrared have been evaluated. Visible light excitation (<600 nm) presents additional safety hazards and is uncomfortable for patients. Near-infrared excitation (>700 nm) overcomes those problems but introduces others, including decreased AF signal and cone signatures that obscure RPE structure. Here we investigated the use of an intermediate wavelength, 663 nm, for excitation and compared it to 795 nm. Subjects were imaged using AOSLO equipped with a detection channel to collect AF emission between 814 and 850 nm. Two light sources (663 and 795 nm) were used to excite the retinal fluorophores. We recorded 90 s videos and registered them with custom software to integrate AF images for analysis. We imaged healthy eyes and an eye with pattern dystrophy. Similar AF microstructures were detected with each excitation source, despite ~4 times lower excitation power with 663 nm. The signal-to-noise values showed no meaningful difference between 663 nm and 795 nm excitation and a similar trend was observed for image contrast between the two excitation wavelengths. Lower light levels can be used with shorter wavelength excitation to achieve comparable images of the microstructure of the RPE as have been obtained using higher light levels at longer wavelengths. Further experiments are needed to fully characterize AF across spectrum and determine the optimal excitation and emission bandwidths that balance efficiency, patient comfort, and efficacy.

Keywords: 663 excitation; pigmented epithelial; near infrared; excitation; autofluorescence; retinal pigmented

Journal Title: Eye
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.