LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing

Photo from wikipedia

In recent genome analyses, population-specific reference panels have indicated important. However, reference panels based on short-read sequencing data do not sufficiently cover long insertions. Therefore, the nature of long insertions… Click to show full abstract

In recent genome analyses, population-specific reference panels have indicated important. However, reference panels based on short-read sequencing data do not sufficiently cover long insertions. Therefore, the nature of long insertions has not been well documented. Here, we assembled a Japanese genome using single-molecule real-time sequencing data and characterized insertions found in the assembled genome. We identified 3691 insertions ranging from 100 bps to ~10,000 bps in the assembled genome relative to the international reference sequence (GRCh38). To validate and characterize these insertions, we mapped short-reads from 1070 Japanese individuals and 728 individuals from eight other populations to insertions integrated into GRCh38. With this result, we constructed JRGv1 (Japanese Reference Genome version 1) by integrating the 903 verified insertions, totaling 1,086,173 bases, shared by at least two Japanese individuals into GRCh38. We also constructed decoyJRGv1 by concatenating 3559 verified insertions, totaling 2,536,870 bases, shared by at least two Japanese individuals or by six other assemblies. This assembly improved the alignment ratio by 0.4% on average. These results demonstrate the importance of refining the reference assembly and creating a population-specific reference genome. JRGv1 and decoyJRGv1 are available at the JRG website.Reference genome: Reading longer sequences improves Japanese referenceResearchers in Japan have assembled a Japanese reference genome, which includes sequences missing from the international reference genome, as well as others specific to East Asian populations. A team led by Masao Nagasaki and Masayuki Yamamoto sequenced a Japanese individual using a method, which produces longer sequences than previous technologies. Using this approach, they identified thousands of sequences spanning 2.5 million bases, which were absent in the international reference genome. Many of these were sequences able to move within the genome. They showed that the majority of these sequences are also present in early humans and chimpanzees, demonstrating that their absence from the current reference is due to deletions or limitations of earlier sequencing methodologies. In addition to providing a population-specific reference, these findings demonstrate the importance of continually improving the international reference genome.

Keywords: single molecule; reference genome; molecule real; reference; japanese reference

Journal Title: Human Genome Variation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.