LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum-disordered state of magnetic and electric dipoles in an organic Mott system

Strongly enhanced quantum fluctuations often lead to a rich variety of quantum-disordered states. Developing approaches to enhance quantum fluctuations may open paths to realize even more fascinating quantum states. Here,… Click to show full abstract

Strongly enhanced quantum fluctuations often lead to a rich variety of quantum-disordered states. Developing approaches to enhance quantum fluctuations may open paths to realize even more fascinating quantum states. Here, we demonstrate that a coupling of localized spins with the zero-point motion of hydrogen atoms, that is, proton fluctuations in a hydrogen-bonded organic Mott insulator provides a different class of quantum spin liquids (QSLs). We find that divergent dielectric behavior associated with the approach to hydrogen-bond order is suppressed by the quantum proton fluctuations, resulting in a quantum paraelectric (QPE) state. Furthermore, our thermal-transport measurements reveal that a QSL state with gapless spin excitations rapidly emerges upon entering the QPE state. These findings indicate that the quantum proton fluctuations give rise to a QSL—a quantum-disordered state of magnetic and electric dipoles—through the coupling between the electron and proton degrees of freedom.The organic material κ-H3(Cat-EDT-TTF)2 has been suggested to exhibit a quantum spin liquid phase in which quantum fluctuations prevent the formation of magnetic order. Here, the authors show that this may be a result of fluctuations of hydrogen atoms, rather than more conventional geometric frustration.

Keywords: state; quantum; state magnetic; quantum disordered; disordered state; organic mott

Journal Title: Nature Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.