LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism

Photo from wikipedia

Under insulin-resistant conditions such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. A liver–brain–pancreas neuronal relay plays an important role in this process. Here, we show the molecular… Click to show full abstract

Under insulin-resistant conditions such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. A liver–brain–pancreas neuronal relay plays an important role in this process. Here, we show the molecular mechanism underlying this compensatory β-cell proliferation. We identify FoxM1 activation in islets from neuronal relay-stimulated mice. Blockade of this relay, including vagotomy, inhibits obesity-induced activation of the β-cell FoxM1 pathway and suppresses β-cell expansion. Inducible β-cell-specific FoxM1 deficiency also blocks compensatory β-cell proliferation. In isolated islets, carbachol and PACAP/VIP synergistically promote β-cell proliferation through a FoxM1-dependent mechanism. These findings indicate that vagal nerves that release several neurotransmitters may allow simultaneous activation of multiple pathways in β-cells selectively, thereby efficiently promoting β-cell proliferation and maintaining glucose homeostasis during obesity development. This neuronal signal-mediated mechanism holds potential for developing novel approaches to regenerating pancreatic β-cells.Neuronal signals, in particular those transmitted via the vagal nerve, regulate both β-cell function and proliferation. Here, Yamamoto et al. show that the forkhead box M1 pathway is required for vagal signal-mediated induction of β-cell proliferation during obesity.

Keywords: foxm1; mechanism; cell proliferation; proliferation; obesity; cell

Journal Title: Nature Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.