Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 1018 W/cm2) short-pulse (duration Click to show full abstract
Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 1018 W/cm2) short-pulse (duration <1 ps) laser, is a growing field of interest, in particular for its manifold potential applications in different domains. Here, we provide experimental evidence that laser-generated particles, in particular protons, can be used for stress testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.Recently, there has been significant progress on the application of laser-generated proton beams in material science. Here the authors demonstrate the benefit of employing such beams in stress testing different materials by examining their mechanical, optical, electrical, and morphological properties.
               
Click one of the above tabs to view related content.