LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production

Photo by skgphotography from unsplash

Existing chlor-alkali processes generally use asbestos, mercury or fluorine-containing ion-exchange membranes to separate the simultaneous chlorine production on the anode and hydrogen production on the cathode, and form sodium hydroxide… Click to show full abstract

Existing chlor-alkali processes generally use asbestos, mercury or fluorine-containing ion-exchange membranes to separate the simultaneous chlorine production on the anode and hydrogen production on the cathode, and form sodium hydroxide in the electrolyte. Here, using the Na+ de-intercalation/intercalation of a Na0.44MnO2 electrode as a redox mediator, we decouple the chlor-alkali process into two independent steps: a H2 production step with the NaOH formation in the electrolyte and a Cl2 production step. The first step involves a cathodic H2 evolution reaction (H2O → H2) and an anodic Na+ de-intercalation reaction (Na0.44MnO2 → Na0.44−xMnO2), during which NaOH is produced in the electrolyte solution. The second step depends on a cathodic Na+ intercalation reaction (Na0.44−xMnO2 → Na0.44MnO2) and an anodic Cl2 production (Cl → Cl2). The cycle of the two steps provides a membrane-free process, which is potentially a promising direction for developing clean chlor-alkali technology.The chlor-alkali process is an important industrial process to make commodity chemicals; however, it usually requires the use of dangerous chemicals as membrane material. Here, the authors demonstrate clean, membrane-free chlor-alkali electrolysis, where chlorine evolution and hydrogen/sodium hydroxide production are completely decoupled.

Keywords: chlor alkali; production; alkali process

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.