LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis

Photo by nci from unsplash

Aggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs… Click to show full abstract

Aggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs are unique within a proteome, but that a small minority of APRs occur in many proteins. When aggregation is nucleated in bacteria by such frequently occurring APRs, it leads to massive and lethal inclusion body formation containing a large number of proteins. Buildup of bacterial resistance against these peptides is slow. In addition, the approach is effective against drug-resistant clinical isolates of Escherichiacoli and Acinetobacterbaumannii, reducing bacterial load in a murine bladder infection model. Our results indicate that redundant APRs are weak points of bacterial protein homeostasis and that targeting these may be an attractive antibacterial strategy.Aggregation is sequence-specific and nucleated by short aggregating protein segments (APR). Here authors use a multidisciplinary approach to show that in E.coli some frequently occurring APRs lead to protein aggregation and ultimately bacterial cell death, which could serve as antibacterial strategy.

Keywords: aggregation; many proteins; sequences occur; occur many; aggregating sequences; proteins constitute

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.