Cell-sized vesicles have tremendous potential both as miniaturised pL reaction vessels and in bottom-up synthetic biology as chassis for artificial cells. In both these areas the introduction of light-responsive modules… Click to show full abstract
Cell-sized vesicles have tremendous potential both as miniaturised pL reaction vessels and in bottom-up synthetic biology as chassis for artificial cells. In both these areas the introduction of light-responsive modules affords increased functionality, for example, to initiate enzymatic reactions in the vesicle interior with spatiotemporal control. Here we report a system composed of nested vesicles where the inner compartments act as phototransducers, responding to ultraviolet irradiation through diacetylene polymerisation-induced pore formation to initiate enzymatic reactions. The controlled release and hydrolysis of a fluorogenic β-galactosidase substrate in the external compartment is demonstrated, where the rate of reaction can be modulated by varying ultraviolet exposure time. Such cell-like nested microreactor structures could be utilised in fields from biocatalysis through to drug delivery.Matryoshka doll-like, nested vesicles, each containing a different ingredient to a chemical reaction, can serve as microreactors. Here, the authors developed a system in which mixing of the ingredients can be induced by irradiation with ultraviolet light.
               
Click one of the above tabs to view related content.