LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Archean phosphorus liberation induced by iron redox geochemistry

Photo by itsmoseley from unsplash

The element phosphorus (P) is central to ecosystem growth and is proposed to be a limiting nutrient for life. The Archean ocean may have been strongly phosphorus-limited due to the… Click to show full abstract

The element phosphorus (P) is central to ecosystem growth and is proposed to be a limiting nutrient for life. The Archean ocean may have been strongly phosphorus-limited due to the selective binding of phosphate to iron oxyhydroxide. Here we report a new route to solubilizing phosphorus in the ancient oceans: reduction of phosphate to phosphite by iron(II) at low (<200 °C) diagenetic temperatures. Reduction of phosphate to phosphite was likely widespread in the Archean, as the reaction occurs rapidly and is demonstrated from thermochemical modeling, experimental analogs, and detection of phosphite in early Archean rocks. We further demonstrate that the higher solubility of phosphite compared to phosphate results in the liberation of phosphorus from ferruginous sediments. This phosphite is relatively stable after its formation, allowing its accumulation in the early oceans. As such, phosphorus, not as phosphate but as phosphite, could have been a major nutrient in early pre-oxygenated oceans.Phosphorus is presumed to have been a limiting nutrient in the Archean ocean due to binding to iron oxides. Here, the authors show the heating of iron with phosphate results in the reduction of phosphate to the ion phosphite, which is solubilized and ameliorates the issue of a low Archean phosphorus supply.

Keywords: archean phosphorus; liberation; geochemistry; iron; phosphite; phosphate

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.