LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform

Photo by schluditsch from unsplash

Secretion of extracellular vesicles (EVs), a process common to eukaryotes, archae, and bacteria, represents a secretory pathway that allows cell-free intercellular communication. Microbial EVs package diverse proteins and influence the… Click to show full abstract

Secretion of extracellular vesicles (EVs), a process common to eukaryotes, archae, and bacteria, represents a secretory pathway that allows cell-free intercellular communication. Microbial EVs package diverse proteins and influence the host-pathogen interaction, but the mechanisms underlying EV production in Gram-positive bacteria are poorly understood. Here we show that EVs purified from community-associated methicillin-resistant Staphylococcus aureus package cytosolic, surface, and secreted proteins, including cytolysins. Staphylococcal alpha-type phenol-soluble modulins promote EV biogenesis by disrupting the cytoplasmic membrane; whereas, peptidoglycan cross-linking and autolysin activity modulate EV production by altering the permeability of the cell wall. We demonstrate that EVs purified from a S. aureus mutant that is genetically engineered to express detoxified cytolysins are immunogenic in mice, elicit cytolysin-neutralizing antibodies, and protect the animals in a lethal sepsis model. Our study reveals mechanisms underlying S. aureus EV production and highlights the usefulness of EVs as a S. aureus vaccine platform.Extracellular vesicles (EVs) influence host-pathogen interactions, but EV biogenesis in gram-positive bacteria remains elusive. Here authors characterize EVs from Staphylococcus aureus and show that phenol-soluble modulins and autolysins promote EV biogenesis by disrupting the membrane and cell wall.

Keywords: extracellular vesicles; staphylococcus aureus; vaccine platform

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.