LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot

Photo from wikipedia

Several animal species demonstrate remarkable locomotive capabilities on land, on water, and under water. A hybrid terrestrial-aquatic robot with similar capabilities requires multimodal locomotive strategies that reconcile the constraints imposed… Click to show full abstract

Several animal species demonstrate remarkable locomotive capabilities on land, on water, and under water. A hybrid terrestrial-aquatic robot with similar capabilities requires multimodal locomotive strategies that reconcile the constraints imposed by the different environments. Here we report the development of a 1.6 g quadrupedal microrobot that can walk on land, swim on water, and transition between the two. This robot utilizes a combination of surface tension and buoyancy to support its weight and generates differential drag using passive flaps to swim forward and turn. Electrowetting is used to break the water surface and transition into water by reducing the contact angle, and subsequently inducing spontaneous wetting. Finally, several design modifications help the robot overcome surface tension and climb a modest incline to transition back onto land. Our results show that microrobots can demonstrate unique locomotive capabilities by leveraging their small size, mesoscale fabrication methods, and surface effects.Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension.

Keywords: hybrid terrestrial; transition; water; surface; terrestrial aquatic; water surface

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.