LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response

Photo from wikipedia

X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security, with many potential uses limited by system cost and/or detector dimensions. Current X-ray detector sensitivities are limited by… Click to show full abstract

X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security, with many potential uses limited by system cost and/or detector dimensions. Current X-ray detector sensitivities are limited by the bulk X-ray attenuation of the materials and consequently necessitate thick crystals (~1 mm–1 cm), resulting in rigid structures, high operational voltages and high cost. Here we present a disruptive, flexible, low cost, broadband, and high sensitivity direct X-ray transduction technology produced by embedding high atomic number bismuth oxide nanoparticles in an organic bulk heterojunction. These hybrid detectors demonstrate sensitivities of 1712 µC mGy−1 cm−3 for “soft” X-rays and ~30 and 58 µC mGy−1 cm−3 under 6 and 15 MV “hard” X-rays generated from a medical linear accelerator; strongly competing with the current solid state detectors, all achieved at low bias voltages (−10 V) and low power, enabling detector operation powered by coin cell batteries.X-ray detectors based on low-cost organic semiconductors have inherently low detector sensitivity due to poor X-ray to charge conversion and charge collection. Here, the authors demonstrate a flexible, high-sensitivity X-ray detector based on an organic bulk heterojunction-nanoparticle composite.

Keywords: high sensitivity; ray detectors; cost; sensitivity; detector; ray

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.