Hydroxylation of arenes via activation of aromatic Csp2–H bond has attracted great attention for decades but remains a huge challenge. Herein, we achieve the ring hydroxylation of various arenes with… Click to show full abstract
Hydroxylation of arenes via activation of aromatic Csp2–H bond has attracted great attention for decades but remains a huge challenge. Herein, we achieve the ring hydroxylation of various arenes with stoichiometric hydrogen peroxide (H2O2) into the corresponding phenols on a robust heterogeneous catalyst series of V–Si–ZSM-22 (TON type vanadium silicalite zeolites) that is straightforward synthesized from an unusual ionic liquid involved dry-gel-conversion route. For benzene hydroxylation, the phenol yield is 30.8% (selectivity >99%). Ring hydroxylation of mono-/di-alkylbenzenes and halogenated aromatic hydrocarbons cause the yields up to 26.2% and selectivities above 90%. The reaction is completed within 30 s, the fastest occasion so far, resulting in ultra-high turnover frequencies (TOFs). Systematic characterization including 51V NMR and X-ray absorption fine structure (XAFS) analyses suggest that such high activity associates with the unique non-radical hydroxylation mechanism arising from the in situ created diperoxo V(IV) state.Hydroxylation of arenes via activation of aromatic Csp2–H bond remains a challenge. Here, the authors have managed to get various arenes hydroxylated to corresponding phenols using stoichiometric hydrogen peroxide and a series of robust V–Si–ZSM-22 catalysts synthesized via an ionic liquid involved dry-gel-conversion route.
Click one of the above tabs to view related content.