LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coordinated collective migration and asymmetric cell division in confluent human keratinocytes without wounding

Photo from wikipedia

Epithelial sheet spreading is a fundamental cellular process that must be coordinated with cell division and differentiation to restore tissue integrity. Here we use consecutive serum deprivation and re-stimulation to… Click to show full abstract

Epithelial sheet spreading is a fundamental cellular process that must be coordinated with cell division and differentiation to restore tissue integrity. Here we use consecutive serum deprivation and re-stimulation to reconstruct biphasic collective migration and proliferation in cultured sheets of human keratinocytes. In this system, a burst of long-range coordinated locomotion is rapidly generated throughout the cell sheet in the absence of wound edges. Migrating cohorts reach correlation lengths of several millimeters and display dependencies on epidermal growth factor receptor-mediated signaling, self-propelled polarized migration, and a G1/G0 cell cycle environment. The migration phase is temporally and spatially aligned with polarized cell divisions characterized by pre-mitotic nuclear migration to the cell front and asymmetric partitioning of nuclear promyelocytic leukemia bodies and lysosomes to opposite daughter cells. This study investigates underlying mechanisms contributing to the stark contrast between cells in a static quiescent state compared to the long-range coordinated collective migration seen in contact with blood serum.Epithelial sheet migration requires polarized and coordinated cell movement. Here, the authors demonstrate serum-activated collective migration followed by polarized asymmetric cell divisions in otherwise quiescent human keratinocyte monolayers in the absence of wound edges.

Keywords: coordinated collective; cell division; migration; collective migration; human keratinocytes; cell

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.